1.optimizer储存的模型参数的值只是引用,因此不必将optimizer移动到cuda上
import torch
import torch.optim as optim
import torch.nn as nn
model = nn.Conv2D(1 ,1, 1)
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001)
optimizer.param_groups
"""
[{'dampening': 0,
'lr': 0.0001,
'momentum': 0,
'nesterov': False,
'params':[Parameter containing:
tensor([[[[-0.8806]]]], requires_grad=True), Parameter containing:
tensor([0.3750], requires_grad=True)],
'weight_decay': 0}]
"""
现在我们将model移动到CUDA上
model.cuda()
optimizer.param_groups
"""
[{'dampening': 0,
'lr': 0.0001,
'momentum': 0,
'nesterov': False,
'params':[Parameter containing:
tensor([[[[-0.8806]]]], device='cuda:0', requires_grad=True),
Parameter containing:
tensor([0.3750], device='cuda:0', requires_grad=True)],
'weight_decay': 0}]
"""
优化器内的参数页跟着移动到了CUDA上。
2.optim.state_dict()没有保存优化器中的模型参数,仅仅保存了参数的数量
此处参见源码
def state_dict(self):
r"""Returns the state of the optimizer as a :class:`dict`.
It contains two entries:
* state - a dict holding current optimization state. Its content
differs between optimizer classes.
* param_groups - a dict containing all parameter groups
"""
# Save order indices instead of Tensors
param_mappings = {}
start_index = 0
def pack_group(group):
nonlocal start_index
packed = {k: v for k, v in group.items() if k != 'params'}
param_mappings.update({id(p): i for i, p in enumerate(group['params'], start_index)
if id(p) not in param_mappings})
# 可以发现此处,对于参数'params'仅仅保存了索引,从0开始,有n个参数就到n-1。
packed['params'] = [param_mappings[id(p)] for p in group['params']]
start_index += len(packed['params'])
return packed
param_groups = [pack_group(g) for g in self.param_groups]
# Remap state to use order indices as keys
packed_state = {(param_mappings[id(k)] if isinstance(k, torch.Tensor) else k): v
for k, v in self.state.items()}
return {
'state': packed_state,
'param_groups': param_groups,
}
3.optim.load_state_dict(state_dict)操作是将目前optimizer中的params参数填充到statedict中,然后用statedict中的state和params_group替换掉目前optimizer中的state和param_group
此处见源码
def load_state_dict(self, state_dict):
r"""Loads the optimizer state.
Args:
state_dict (dict): optimizer state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = deepcopy(state_dict)
# Validate the state_dict
groups = self.param_groups
saved_groups = state_dict['param_groups']
if len(groups) != len(saved_groups):
raise ValueError("loaded state dict has a different number of "
"parameter groups")
param_lens = (len(g['params']) for g in groups)
saved_lens = (len(g['params']) for g in saved_groups)
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError("loaded state dict contains a parameter group "
"that doesn't match the size of optimizer's group")
# Update the state
id_map = {old_id: p for old_id, p in
zip(chain.from_iterable((g['params'] for g in saved_groups)),
chain.from_iterable((g['params'] for g in groups)))}
def cast(param, value):
r"""Make a deep copy of value, casting all tensors to device of param."""
if isinstance(value, torch.Tensor):
# Floating-point types are a bit special here. They are the only ones
# that are assumed to always match the type of params.
if param.is_floating_point():
value = value.to(param.dtype)
value = value.to(param.device)
return value
elif isinstance(value, dict):
return {k: cast(param, v) for k, v in value.items()}
elif isinstance(value, container_abcs.Iterable):
return type(value)(cast(param, v) for v in value)
else:
return value
# Copy state assigned to params (and cast tensors to appropriate types).
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
state = defaultdict(dict)
for k, v in state_dict['state'].items():
if k in id_map:
param = id_map[k]
state[param] = cast(param, v)
else:
state[k] = v
# Update parameter groups, setting their 'params' value
# 这里进行参数替换
def update_group(group, new_group):
new_group['params'] = group['params']
return new_group
param_groups = [
update_group(g, ng) for g, ng in zip(groups, saved_groups)]
self.__setstate__({'state': state, 'param_groups': param_groups})